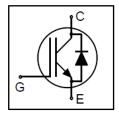


JHH40N120FA2

Product Preview

1200V/40A FIELD-STOP TRENCH IGBT WITH DIODE

Features


- Low V_{CE(sat)}
- Fast Switching
- High Ruggedness
- Short-Circuit Rated

Product Summary					
V_{CES}	1200V				
I _C	40A ⁽¹⁾				
$V_{CE(sat),typ}$	1.75V (T _J = 25°C)				
Package	TO-247				

Applications

- Inverters
- Frequency Converters
- Industrial Motor Drives
- Uninterrupted Power Supply

Ordering Information

Part Number	Marking	Package	Packaging
JHH40N120FA2	HH40N120FA2	TO-247	Tube

Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit
Collector-to-Emitter Voltage	V _{CES}	1200	V
Gate-to-Emitter Voltage	V_{GES}	±20	\ \ \
DC Collector Current (T _c = 25°C, T _J = 175°C)		65	
DC Collector Current (T _c = 100°C, T _J = 175°C)	- I _C	43	
Pulsed Collector Current (pulse width limited by maximum T _J)	I _{CM}	160] ,
Diode Forward Current (T _c = 25°C, T _J = 175°C)		65	A
Diode Forward Current (T _c = 100°C, T _J = 175°C)	- I _F	43	
Diode Pulsed Current (pulse width limited by maximum T _J)	I _{FM}	160	
Short Circuit Withstand Time ($V_{GE} = 15V$, $V_{CC} \le 600V$, $T_{J_start} \le 175$ °C)	t _{SC}	10	μs
Turn-off Safe Operating Area (V _{CE} ≤ 1200V, T _J ≤ 175°C)	-	160	А
Maximum Power Dissipation (T _c = 25°C, T _J = 175°C)	P _{D(max)}	300	W
Operating Junction Temperature	T _J	-40 to +175	
Storage Temperature	T _{stg}	-55 to +150	°C
Maximum Lead Temperature for Soldering (1/8" from case for 5 seconds)	T _{sld}	260	

Static Electrical Characteristics (2)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-to-Emitter Breakdown Voltage	BV _{CES}	V _{GE} = 0V, I _C = 250μA	1200	-	-	V
		V _{CE} = 1200V, V _{GE} = 0V	-	-	10	μΑ
Collector-to-Emitter Leakage Current	I _{CES}	$V_{CE} = 1200V, V_{GE} = 0V,$ $T_{J} = 150^{\circ}C$	-	-	5	mA
		$V_{CE} = 1200V, V_{GE} = 0V,$ $T_{J} = 175^{\circ}C$	-	-	20	mA
Gate-to-Emitter Leakage Current	I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$	-	-	100	nA
Gate Threshold Voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 1.5$ mA	5.5	6.5	7.5	
		V _{GE} = 15V, I _C = 40A	-	1.75	2.1	
Collector-to-Emitter Saturation Voltage	V _{CE(sat)}	$V_{GE} = 15V, I_{C} = 40A,$ $T_{J} = 150^{\circ}C$	-	2.3	-	
		$V_{GE} = 15V, I_{C} = 40A,$ $T_{J} = 175^{\circ}C$	-	2.45	-	V
		V _{GE} = 0V, I _F = 40A	-	2.15	2.6	
Diode Forward Voltage	V _F	$V_{GE} = 0V, I_F = 40A$ $T_J = 150^{\circ}C$	-	2.35	-	
		V _{GE} = 0V, I _F = 40A T _J =175°C	-	2.25	-	

Thermal Characteristics

Parameter		Min	Тур	Max	Unit
Junction-to-Ambient Thermal Resistance	$R_{\theta JA}$	-	-	40	
Junction-to-Case Thermal Resistance, IGBT	В	-	-	0.5	°C/W
Junction-to-Case Thermal Resistance, Diode	R _{θJC}	-	-	0.6	

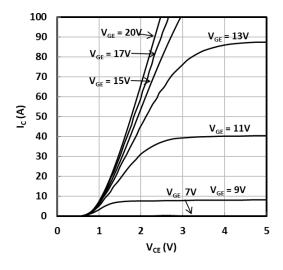
Dynamic Electrical Characteristics (2)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Total Gate Charge	$Q_{\rm g}$	$V_{CC} = 600V$, $V_{GE} = 15V$, $I_C = 40A$	-	148	ı	nC
Input Capacitance	C _{iss}	V _{CE} = 25V,	-	3460	-	
Output Capacitance	C _{oss}	$V_{GE} = 0V$,	-	154	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1MHz	-	41	-	

Switching Characteristics, Inductive Load $^{(2),\,(3)}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Turn-on Delay time	t _{d(ON)}	V 600V	-	45	-	
Rise Time	t _r	$V_{CC} = 600V,$ $V_{GE} = 0/15V,$	-	58	-	
Turn-off Delay time	t _{d(OFF)}	$R_G = 10\Omega$, $I_C = 40A$,	-	165	-	ns
Fall Time	t _f	L _{load} = 0.82mH,	-	110	-	
Turn-On Switching Loss	E _{on}	Energy losses include "tail" and diode	-	2.9	-	
Turn-Off Switching Loss	E _{off}	reverse recovery.	-	1.8	-	mJ
IGBT Total Switching Loss	E _{ts}		-	4.7	-	
Diode Reverse-Recovery Time	t _{rr}	V _R = 600V,	-	195	-	ns
Diode Reverse-Recovery Charge	Q _{rr}	I _F = 40A,	-	1500	-	nC
Diode Peak Reverse-Recovery Current	I _{rrm}	dI _F /dt = 672A/μs	-	18	-	Α
Turn-on Delay time	t _{d(ON)}	V _{cc} = 600V,	-	42	-	- ns
Rise Time	t _r	$V_{GE} = 0/15V$, $R_{G} = 10\Omega$,	-	60	-	
Turn-off Delay time	t _{d(OFF)}	I _C = 40A,	-	210	-	
Fall Time	t _f	L _{load} = 0.82mH, T _J = 175°C	-	153	-	
Turn-On Switching Loss	E _{on}	Energy losses include "tail" and diode	-	4.3	-	
Turn-Off Switching Loss	E _{off}	reverse recovery.	-	2.4	-	mJ
IGBT Total Switching Loss	E _{ts}		-	6.7	-	
Diode Reverse-Recovery Time	t _{rr}	V _R = 600V,	-	360	-	ns
Diode Reverse-Recovery Charge	Q _{rr}	$I_F = 40A,$ $dI_F/dt = 520 A/\mu s,$	-	3400	-	nC
Diode Peak Reverse-Recovery Current	I _{rrm}	T _J = 175°C	-	23	-	Α
Short Circuit Collector Current (T _J = 25°C)	I _{C(SC)}	V_{GE} = 15V, $V_{CC} \le 600V$, $t_{SC} \le 10\mu s$	-	160	-	А

⁽¹⁾ DC collector current, $T_c = 100$ °C, $T_J = 175$ °C.


⁽²⁾ $T_J = 25$ °C unless otherwise specified

⁽³⁾ $t_{r}\!\!:$ from 10% of Ic to 90% of Ic; $t_{f}\!\!:$ from 90% of Ic to 10% of Ic;

 $E_{on}\!\!:$ from 10% of V_{GE} to 10% of $V_{CE};\quad E_{off}\!\!:$ from 90% of V_{GE} to 10% of Ic.

Typical Electrical Characteristics

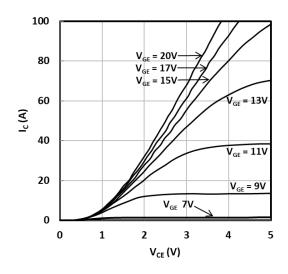
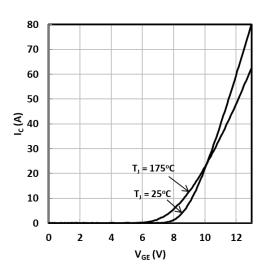



Fig. 1 Typical output characteristics

$$(T_J = 25 \, ^{\circ}\text{C}, t_p = 250 \, \mu\text{s})$$

$$(T_J = 175 \, ^{\circ}\text{C}, t_p = 250 \, \mu\text{s})$$

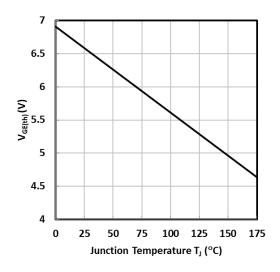


Fig. 3 Typical transfer characteristics

$$(V_{CE} = 20 \text{ V}, t_p = 250 \mu\text{s})$$

Fig. 4 Typical gate threshold voltage as a function of junction temperature

$$(V_{CE} = V_{GE}, I_C = 1.5mA)$$

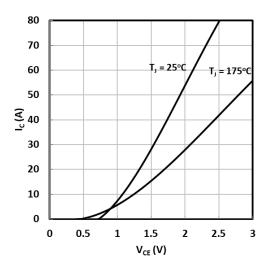


Fig. 5 Typical saturation voltage characteristics $(V_{GE}=15~V,\,t_p=250~\mu s)$

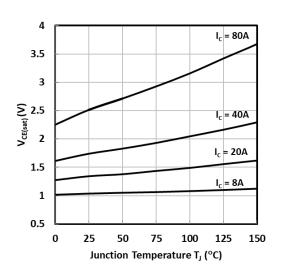


Fig. 6 Typical saturation voltage as a function of junction temperature

$$(V_{GE} = 15 \text{ V}, t_p = 250 \mu\text{s})$$

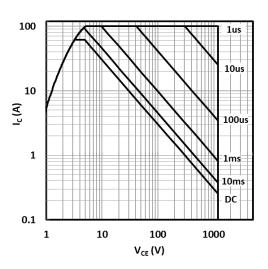


Fig. 7 Safe operating area

(D = 0,
$$T_{C}$$
 = 25 °C, V_{GE} = 15 V, $T_{J} \leq$ 175 °C)

Fig. 8 Maximum DC collector current as a function of case temperature

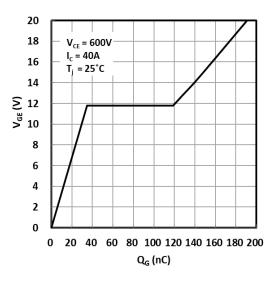
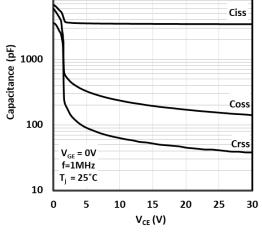



Fig. 9 Typical gate charge characteristics

10000

Fig. 10 Typical capacitance as a function of collector-to-emitter voltage

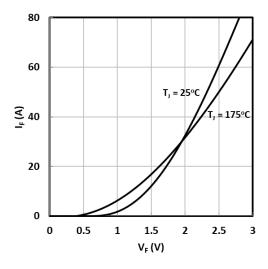


Fig. 11 Typical diode forward current as a function of forward voltage

$$(V_{GE} = 0 V, t_p = 250 \mu s)$$

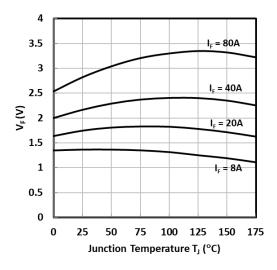
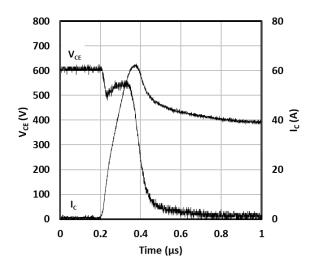



Fig. 12 Typical diode forward voltage as a function of junction temperature

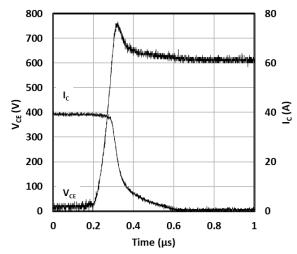
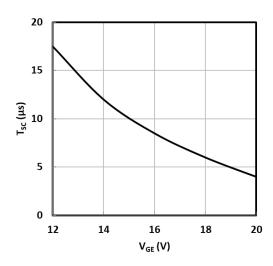



Fig. 13 Typical turn on behavior

$$(V_{GE} = 0/15V, R_G = 10\Omega, T_J = 175^{\circ}C)$$

Fig. 14 Typical turn off behavior

$$(V_{GE} = 0/15V, R_G = 10\Omega, T_J = 175^{\circ}C)$$

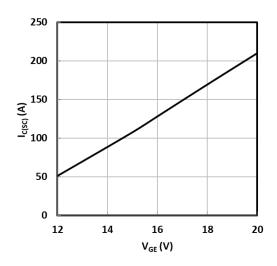
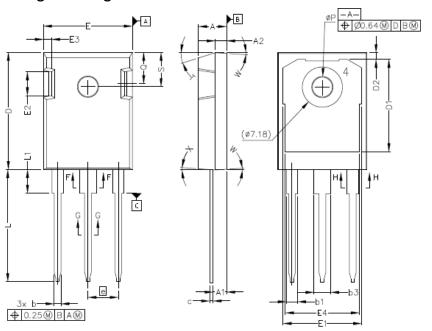
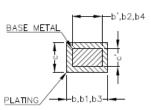


Fig. 15 Typical short circuit withstand time as a function of gate-emitter voltage

$$(V_{CE} = 600V, Start at T_J = 175 °C)$$


Fig. 16 Typical short circuit collector current as a function of gate-emitter voltage


(
$$V_{CE} \le 600V$$
, Start at $T_J = 175$ °C)

CONFIDENTIAL

Package Drawing

0)/1/	MILLIM	ETERS	TERS INCHE	
SYM	MIN	MAX	MIN	MAX
A	4.83	5.21	.190	.205
A1	2.29	2.54	.090	.100
A2	1.91	2.16	.075	.085
b'	1.07	1.28	.042	.050
ь	1.07	1.33	.042	.052
b1	1.91	2.41	.075	.095
b2	1.91	2.16	.075	.085
b3	2.87	3.38	.113	.133
b4	2.87	3.13	.113	.123
c'	0.55	0.65	.022	.026
c	0.55	0.68	.022	.027
D	20.80	21.10	.819	.831
D1	16.25	17.65	.640	.695
D2	0.95	1.25	.037	.049
E	15.75	16.13	.620	.635
E1	13.10	14.15	.516	.557
E2	3.68	5.10	.145	.201
E3	1.00	1.90	.039	.075
E4	12.38	13.43	.487	.529
e	5.44 BSC		.214 E	BSC
N	3			3
L	19.81	20.32	.780	.800
L1	4.10	4.40	.161	.173
ΦP	3.51	3.65	.138	.144
Q	5.49	6.00	.216	.236
S	6.04	6.30	.238	.248
T		17.5° R	EF.	
W		3.5° RI	F.	
X		4° REF		

TO-247

Revision history of JHH40N120FA2 Specification

Version	Change Items	Effective Date
1.00	Initial Release	22-Jun-20
1.01	Thermal and switching characteristic updates.	30-Jul-20

Notice

General – Information in this document is believed to be accurate and reliable. However, JSAB Technologies does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes – JSAB Technologies reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use – JSAB Technologies' products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an JSAB Technologies product can reasonably be expected to result in personal injury, death or severe property or environmental damage. JSAB Technologies accepts no liability for inclusion and/or use of JSAB Technologies' products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications – Applications that are described herein for any of these products are for illustrative purposes only. JSAB Technologies makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values – Stress above one or more limiting values may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale – JSAB Technologies' products are sold subject to the general terms and conditions of commercial sale, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by JSAB Technologies. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control – This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data – The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.